Zustandsgrößen

... beschreiben bestimmte charakteristische Eigenschaften eines thermodynamischen Systems, diese Eigenschaften sind bei verschiedenen Systemzuständen unterschiedlich.

TEMPERATUR; T
$$(\vartheta)$$
; $[T] = 1K ([\vartheta] = 1^{\circ}C)$

➤ Unterscheidbarkeit der Systeme in "heiß" und "kalt", bzw. die Stärke der Teilchenbewegung im System

DRUCK; p; [p] =
$$1Pa = 1N \cdot m^{-2} (1bar = 10^5 Pa)$$

➤ Kraftwirkung auf eine Fläche, bzw. Wechselwirkung der Teilchen mit der Gefäßwand

VOLUMEN; V; [V] =
$$1 \text{m}^3 (1 \ell = 0.001 \text{ m}^3)$$

Rauminhalt des Systems; bzw. Aufenthaltsgebiet der Teilchen eines Systems

THERMISCHE ENERGIE;
$$E_{th}$$
; $[E_{th}] = 1J = 1N \cdot m$;

Fähigkeit der Wärmeabgabe, bzw. gesamte kinetische Energie der Teilchen

INNERE ENERGIE;
$$U$$
; $[U] = 1J$

> gesamte Energie der Teilchen, bestehend aus kinetischer Energie (Teilchenbewegung) und potentieller Energie (Teilchenbindung)

WÄRMEKAPAZITÄT;
$$K(C)$$
; $[K] = 1J \cdot K^{-1}$; (spezifische Wärmekapazität; c ; $[c] = 1J \cdot kg^{-1} \cdot K^{-1}$);

➤ Wärmeaufnahmevermögen (spezifisch: bezogen auf die Masse) eines Systems bei Temperaturänderung innerhalb eines Aggregatzustandes

$$MASSE; m; [m] = 1kg$$

> Schwere bzw. Trägheit eines Systems

Prozessgrößen

... beschreiben die (energetischen) Wechselwirkungen des Systems mit seiner Umgebung und die dadurch stattfindenden Änderungen des Systemzustandes

$$\mathbf{W\ddot{A}RME}$$
; Q; [Q] = 1J

➤ Energieumwandlung bzw. Energieübertragung aufgrund von Temperaturunterschieden oder Aggregatzustandsänderungen

ARBEIT; W;
$$[W] = 1J$$

> Energieumwandlung bzw. Energieübertragung aufgrund des Wirkens von Kräften